

# Estimating the cost of disruption to travel caused by severe winter weather

- Karl Johnston
- Head of Road and Rail Economics
- Transport Scotland
- karl.johnston@scotland.gsi.gov.uk

Other Authors: Jack Causley; Sean Murchie Assistant Economists
Transport Scotland/ Scottish Government

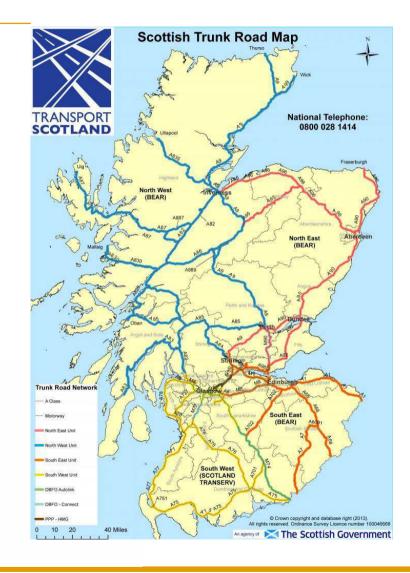




#### CONTENT

- 1. Introduction
- 2. Experience of the 2010 winter
- 3. Economic and social costs of winter disruption
- 4. Benefits of increased expenditure on winter resilience
- 5. Transport Scotland's response
- 6. Case study
- 7. Conclusions




#### 1 INTRODUCTION

### **Karl Johnston**

- Head of Road and Rail Economics,
- **Transport Scotland**
- Experience in Scottish Government and Whitehall (UK)

## **Transport Scotland**

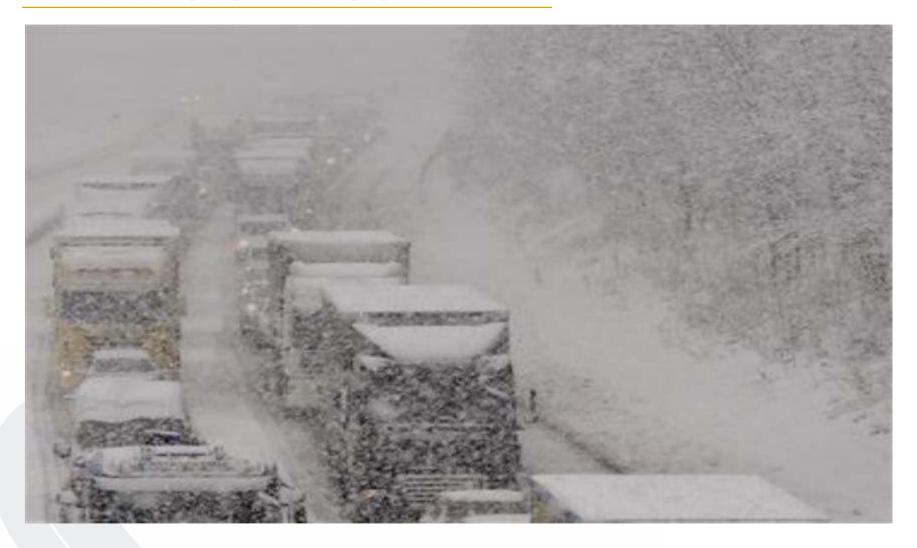
- Rail and trunk road networks
- Major public transport projects
- National concessionary travel schemes
- Transport policy





#### 1. INTRODUCTION

- Weather in Scotland is very unpredictable – may be a lot of snow or no snow in any given year.
- Scotland has suffered some particularly severe winters in recent years – December 2010 coldest Scottish winter since records began.
- Exercise to examine social and economic costs of severe winter weather and illustrate benefits of increased investment.








- Heaviest snowfall since 1960
- Coldest December on record
- Heavy snow in November
- Long periods of record low temperatures
- Salt shortages
- HGVs loosing traction on inclines
- M90 and A9 closed overnight
- M8 (motorway between Glasgow and Edinburgh) closed for 2 Days





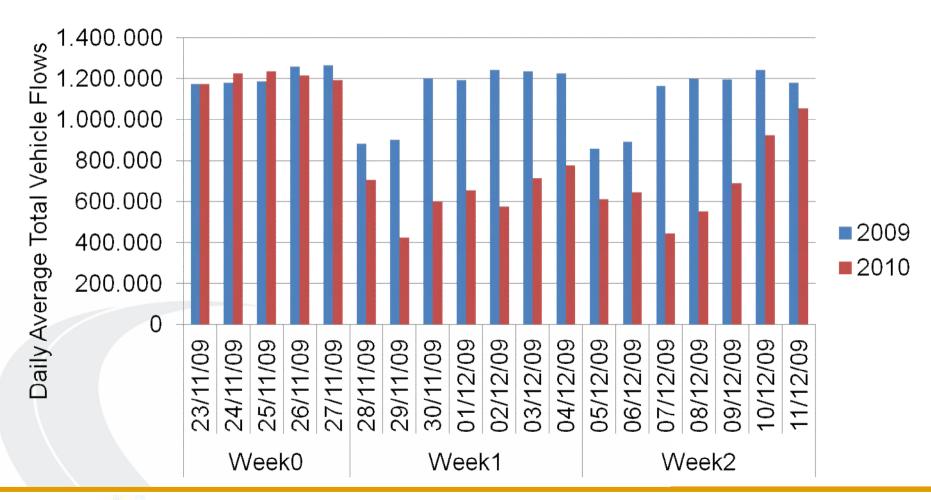











## **Impacts**

- •Low temperatures and significant snowfalls
- Schools closed, hospital admissions soared
- Flights suspended, bus and rail services disrupted
- Biggest impact was on the road network
- Transport Minister resigned in the political aftermath





## Scottish Road Traffic Database (SRTDb) Daily Average Total Vehicle Flows





Time impact on travellers of 1 hour delay in the morning peak





- BIG data gaps. Judgement sometimes employed
- Used Winter Resilience Review (WRR) model
- Daily welfare cost of disruption caused by severe weather to be £30m (in 2010 prices)
- Daily GDP impact assumed to be £15m
- Met Office average number of snow days in Scotland 1968-2010:
  - 11 days of severe disruption per year
  - Annual welfare cost of c. £330m.



| Costs (daily, 2010 prices)                                                             | Welfare costs, £m |  |
|----------------------------------------------------------------------------------------|-------------------|--|
| Reduced economic output from lost commuting and business/commuting journey time delays | 13.0              |  |
| Lost output from working parents with dependent children not at school                 | 0.4               |  |
| Lost hospital appointments                                                             | 0.1               |  |
| Goods vehicle delays                                                                   | 1.1               |  |
| Wastage on food and perishables                                                        | 0.2               |  |
| Road vehicle collisions                                                                | 0.0               |  |
| Pedestrian accidents                                                                   | 2.4               |  |
| Lost journeys - personal travel                                                        | 4.6               |  |
| Journey time delays - personal travel                                                  | 3.2               |  |
| Pedestrian delays                                                                      | 4.7               |  |
| Total                                                                                  | 29.7              |  |



• Sensitivity analysis - .....

|                 |                        | Average Annual Welfare Cost to Scotland |                  |  |
|-----------------|------------------------|-----------------------------------------|------------------|--|
| Years Snow Data | Number of Snow<br>Days | Range                                   | Central Estimate |  |
| 1968-2010       | 11.1                   | £115m - £633m                           | £330m            |  |
| 1981-2010       | 6.6                    | £65m - £374m                            | £195m            |  |
| 1991-2010       | 3.8                    | £35m - £217m                            | £112m            |  |



## **GDP** impact:

- •£15m per day, range from £4m to £31m.
- •Cost to commuters is considered a GDP cost in this analysis it is assumed that commuting delays are a cost to the employer.

## Other areas of potential cost (unquantified):

- Lost education
- Damage to highway/vehicles from potholes
- International trade and travel
- CO2 impact and operational cost of driving
- Changes in fuel use at home, work etc.
- Cost of additional breakdowns
- Any cost associated with investment environmental impact of salt etc.



#### 4. BENEFITS OF INCREASED EXPENDITURE ON WINTER RESILIENCE

## Current annual spend:

- •£110 from Local Authorities,
- •£10m from Transport Scotland
- •£120m total

## Benefit of increase in spend of 50%, i.e. to £180m

|                 | Range        | Central Estimate |
|-----------------|--------------|------------------|
| GDP benefit     | £8m - £95m   | £38m             |
| Welfare benefit | £6m - £70m   | £31m             |
| Total benefit   | £15m - £165m | £70m             |

NB Totals do not sum due to rounding.



## 4. BENEFITS OF INCREASED EXPENDITURE ON WINTER RESILIENCE

Analysis heavily dependent on assumptions:

- Proportion of disruption that can be avoided:
  - 20%
  - 25%
  - 30%
- •Length of delays caused by winter disruption (averaged across all trips)
  - 2 minutes
  - 4 minutes
  - 6 minutes



#### 5. TRANSPORT SCOTLAND'S RESPONSE

#### Winter treatment:

- •23 additional patrol gritters
- •30 minute maximum response time
- •2 hour target for completion
- New plant eg icebreakers, footway snow blowers, inverted V-ploughs
- •Guidance on use of alternative de-icers
- Vulnerable locations identified for targeted interventions





## 5. TRANSPORT SCOTLAND'S RESPONSE

Enhanced decision making using better info, eg new weather stations:

- New weather stations
- •Real time monitoring of location and temperature of each gritter





## 5. TRANSPORT SCOTLAND'S RESPONSE

## Communication with road users improved – info "on the move"

- Major lesson learnt
- Strengthened Traffic Scotland information service
  - Information "on the move"
  - Traffic Scotland Radio
- Ability to follow progress of the spreader fleet







#### 6. WINTER PATROLS CASE STUDY

|                                      | Point 1 (high) | Point 2<br>(middling) | Point 3 (low) |
|--------------------------------------|----------------|-----------------------|---------------|
| Hours Saved by Avoiding 1 Hour Delay | 18,000         | 6,000                 | 3,000         |
| Value of Time Benefit (2010 Prices)  | £140,000       | £50,000               | £20,000       |

- Previously two hours on average to "complete"
- Now Winter Service Patrols designed to reach any part of the network in 30 mins.
- Assume average response time improvement of 1 hour

| Cost of Additional Winter Patrols, 2012-13, South East Unit | Number<br>of<br>Patrols | Cost per<br>Patrol | Number of Winter Patrol<br>Incidents, South East<br>Unit, 2012-13 | Cost Per<br>Incident |
|-------------------------------------------------------------|-------------------------|--------------------|-------------------------------------------------------------------|----------------------|
| £800,000                                                    | 7                       | £115,000           | 234                                                               | £3,500               |



#### 7. CONCLUSIONS

- Economic and social costs of disruption caused by severe winter weather are high
- Analysis highlights the potential positive net benefits of increased spend on well targeted and managed measures to reduce disruption
- Improved winter patrols offer significant benefits
- Caution: data gaps mean that results highly dependent on assumptions
- Further evidence and analysis required



## 6. QUESTIONS?



