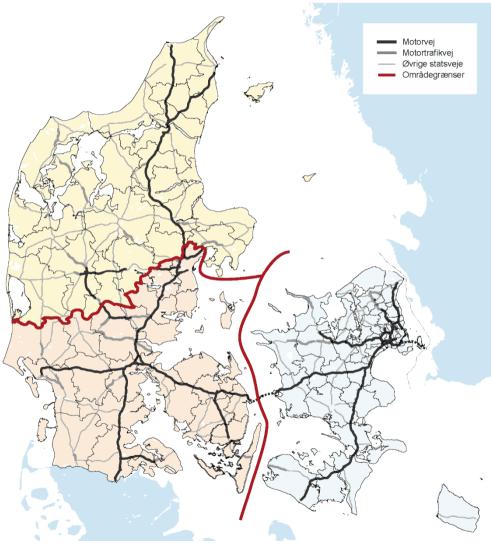


TRAFFIC IMPACT ON THE ICE MELTING



XIVth INTERNATIONAL WINTER ROAD CONGRESS February 4th to 7th 2014

MICHEL M. ERAM

Senior Consultant Civil engineer M.Sc., eMBA The Danish Road Directorate E-mail: me5@vd.dk Vejdirektoratet.dk

The Danish Road network

Road authorities	Road network	Motorway	Expressway and trunk roads	municipal road						
State roads	3.791	1.145	2.646	0						
Sound & Belt	41	41	0	0						
98 Municipalities	70.276	8	66	70.202						
The length of public roads 2013 [km] - Source: The Danish Road Directorate										

Winter in Danmark...

Winter season: State: 1/10 - 30/4 Municipalities: ? Winter road classes: Stats roads: class 1 Municipalities roads : ...

Call-outs

State: 100 call-outs Municipalities : 60-80 call-outs Salt consumption

> Staten: 55.000 tons/season Municipalities : 245.000 tons/season

Salt consumption

State roads: 1,10 kg/m² ~ 150-200 kg/pa Municipalities roads : ?

Economy

State roads ~ 29m. € (3 800 km.) Municipalities roads ~ 106m. € (70.000 l

Salting: 530t. € pr. salting on entire Danish roads Snow removal: 7m. € pr. day on entire Danish road

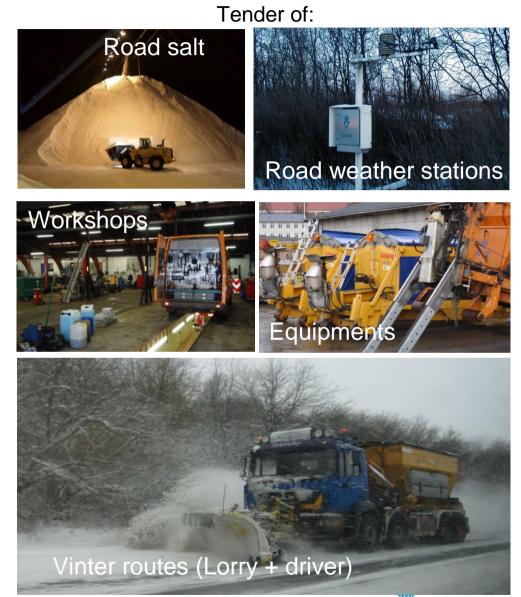
Historically salt consumption and the number of call-outs on the state road network

110.000 250 104.024 100.835 100.000 90.230 90.000 200 202 80.000 179 70.000 161 150 60.000 Average salt Consumption 49.662 50.000 45.489 Average number of call-outs 100 40.000 35.536 93 93 30,000 69 50 20.000 10.000 0 0 07/08 08109 09110 11/12 12/13 10/11 Winter season

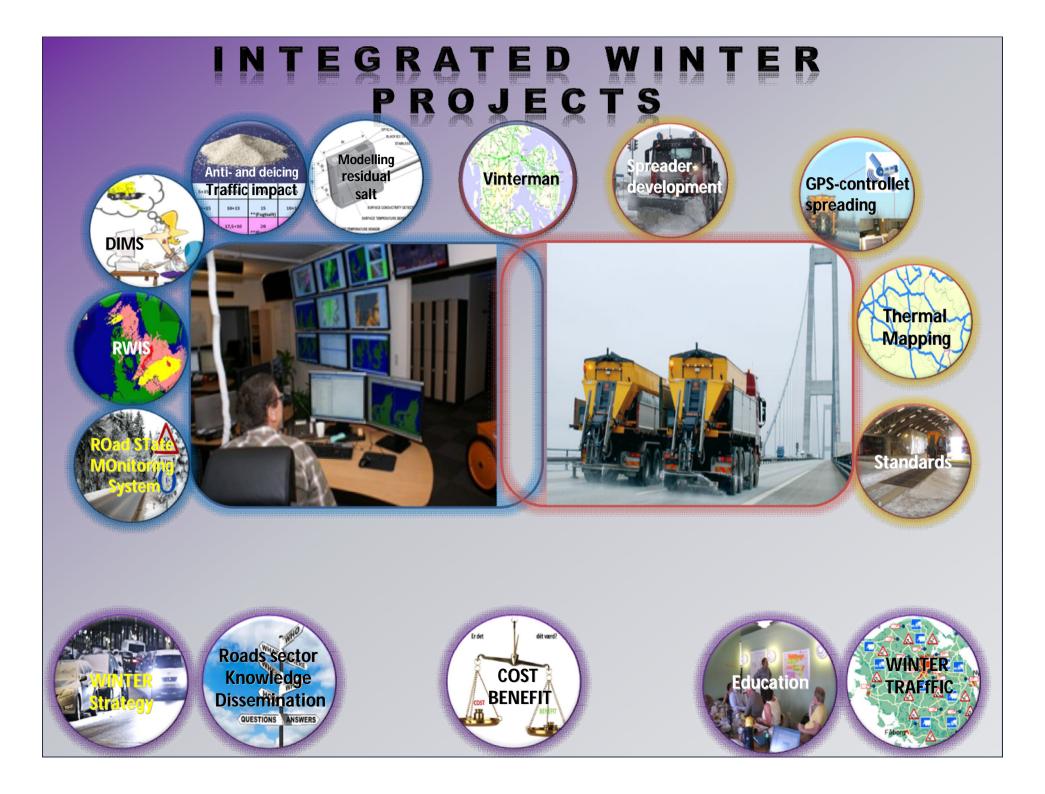
Tons of salt

Number of call-outs

Vejdirektoratet Derish Roed Directorate

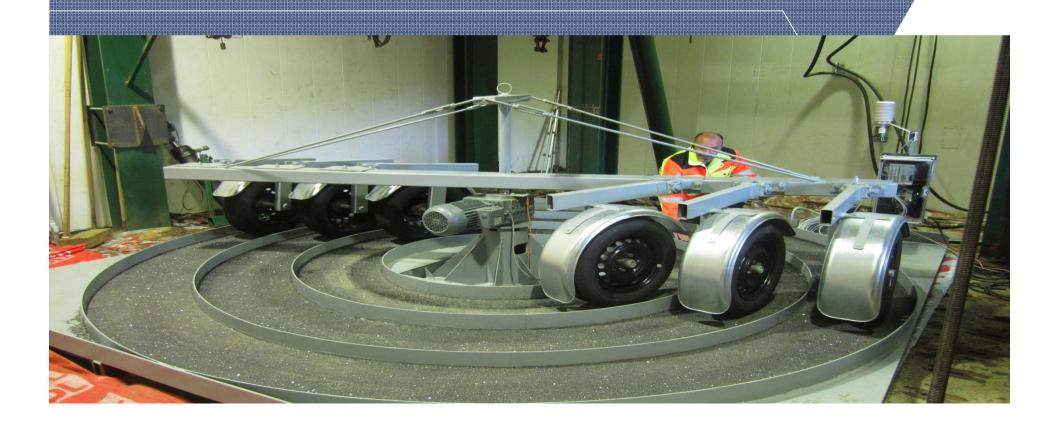

Winterservice – Road Directorate

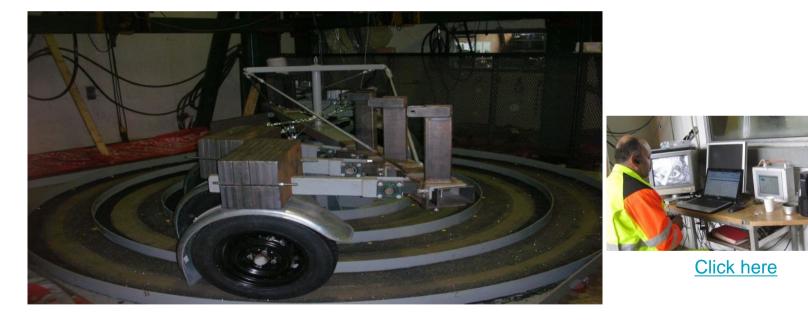
Winter Surveillance center in Aalborg



Calling out, managing and monitoring

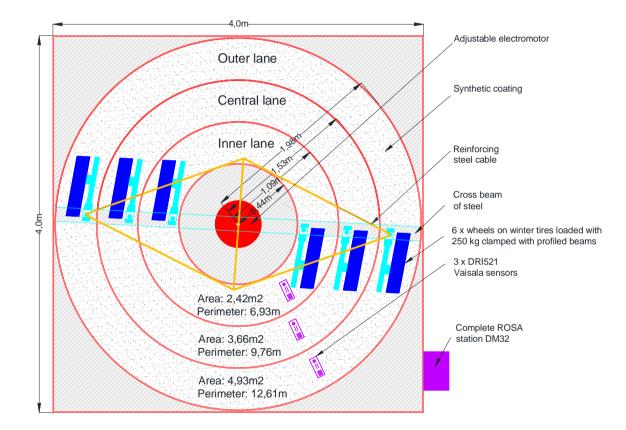
- States roads Winter:
- \cong 3.800 km (6.096 km route length)
- \cong 125 salt routes
- ≅ 50 km in avr. length
- ≅ 97 contracts
- ≅ 150 contractors
- \cong 225 salt spreaders
- \cong 550 plough





TRAFFIC IMPACT ON THE ICE MELTING

ICE-CAROUSEL OBJECTIVES

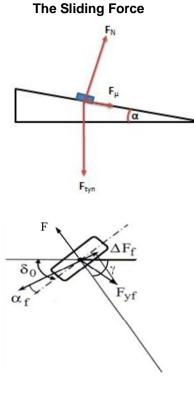

- Determination of traffic-accelerating effect on the thawing of ice.
- Determine the friction energy created by the rolling resistance between tires and the road surface.

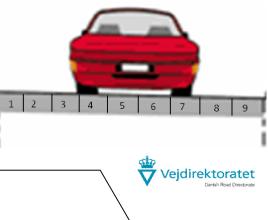
DRAWINGS OF ICE-CAROUSEL

Ice-carousel is constructed from a large steel plate which is divided into three annular lanes each got synthetic coating as a replacement for conventional paving. Traditional asphalt could not be used because the asphalt's properties together with steel would not be successful when the temperature drops to minus degrees.

METHOD OF TESTING

- Determine traffic accelerating effect on the thawing of ice. In this experiment, various de-icing agents and dosages are applied.
 - De-icers approved by the De-icers Group and the dosage is determined by the de-icer properties and capabilities under different temperatures
 - The following de-icers are temporarily approved:
 - Road salt
 - Magnesium chloride
 - Calcium chloride
 - Safecote
 - Calcium magnesium acetate CMA 25 & 30 %
 - Potassium formate




🐨 Vejdirektoratet

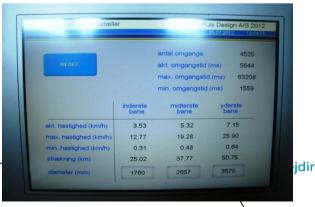
Products marked in red are reported until 1 June 2014

FROM AN EXPERIMENTAL SETUP TO REAL TRAFFIC CONDITIONS The Slidi

- The tires are not affected by the sliding force. The force is offset by the cross bar which holds on the wheels.
- The extra rolling resistance for a turning wheel is incorporate into analysis
- The probability of vehicles position on roadway are calculated, and incorporated into the model

EQUIVALENCE OF TRAFFIC INTENSITY

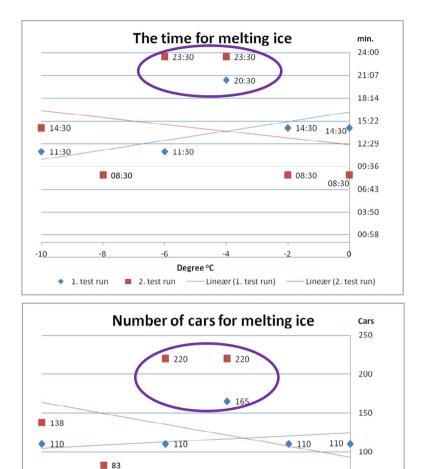
- Both the rotating speed and rotational frequency has a major impact on the traffic intensity represented for such roads.
- De-icers group subsequently recommended two traffic intensities which are the basis of traffic flow respectively on municipal roads and state roads. The following tests are conducted in accordance with De-icers group's recommendation.


Road type	Capacity	AADT
Municipal roads	300 cars/hour/direction	\cong 7200 daily traffic/direction
State roads	1000 cars/hour/direction	\cong 24000 daily traffic/direction

 Taken the above-mentioned recommendation into consideration, the traffic intensity for each lane is determined on the basis of either rotation frequency or speed with the following spreadsheet:

Selection	on of speed			
	diameter	Speed	lap time	traffic intensity
Track	mm	km/t	msec	cars/hour
Inner	1682	1.59	12000	300
Middle	2592	2.44	12000	300
Outer	3498	3.30	12000	300

Selection of rotation frequency


	diameter	Speed	lap time	traffic intensity	
Track	mm	km/t	Msec	cars/hour	
 Inner	1682	5.28	3600	1000	-
Middle	2592	8.14	3600	1000	
Outer	3498	10.99	3600	1000	

jdirektoratet Darish Road Directorate

PRELIMINARY TEST RESULTS TRAFFIC FLOW RESPECTIVELY ON MUNICIPAL ROADS

- The time for melting the ice is calculated to be between 8.30 min to 14.30 min. This equivalent to 55 to 138 cars.
- The deviations that appears on the datasheet are most probably due the spreading technique which is used to spread the deicing prior to the initiation of each test

-10

-8

1. test run

-6

2. test run –

-4

Degree °C

55

-2

Lineær (1. test run)
Lineær (2. test run)

55 📕 50

0

0

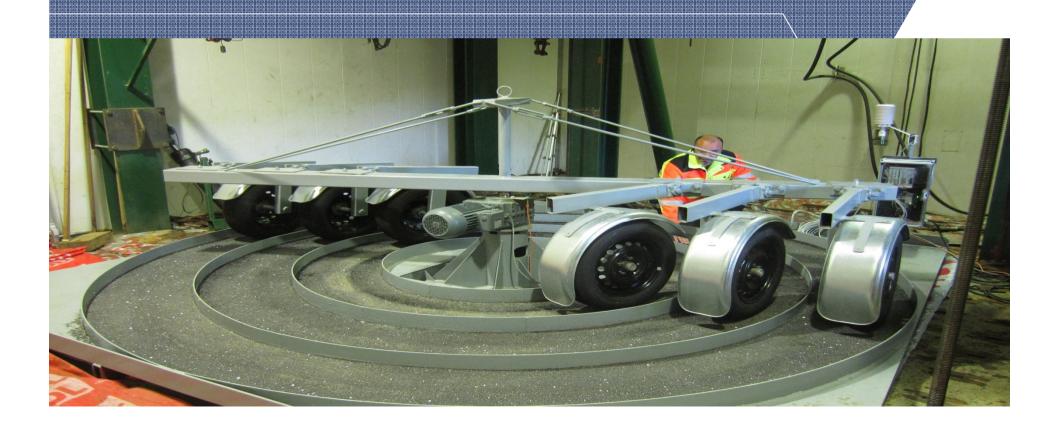
et

UNCERTAINTIES

- All tests will be made in a cold room, therefore:
 - Wind effect which under normal circumstances would blow on pavement, will not be present.
 - Irradiance and radiance can not be achieved.
 - The significance of the synthetic coating vs. traditional pavement is so far unknown
 - The use of road sensors are subject to some uncertainties

IMPLEMENTATION

- If it turns out that the friction energy have enough effect on the heating of the road surface, the results will immediately be used in the dosing instructions, as currently used, inter alia, municipalities and the state.
 - It is expected that the results may contribute to the salt consumption during call-outs can also be traffic dependent, ie. in rush hours, consumption can be reduced, and at best, some salting entries completely avoided by creating sufficient heat.


						Vintersa	eson 201	1/2012					Vejdi	
			Fugitait	Fugtuelt	Figginati	Epoka Combi	Epoke Combi	Nide Combi	Nido Combi	EüpperWeiser Domki	KöpperWolasr	Feficiping Combi	Falkbaing Combi	Villeka
			Sprødere	Sprødere	Spredere	(Tailerken)	(Dyser)	(Tallecken)	iOyser &. Tallerken)	(Tallerkan)	Combi (Dysor)	(fallerken)	(Dyser)	Sprødere
	Spredertype		30% befugtning	50% Befugtning	30% befugtning	\$4408	54402	Stratios 1	Stratov 2	HMS Contribi	SAS Combrives	CEC 546	0,6546	SLH .
		5W3501	5993503	cs		\$4502						CSC 646	94.E	
			2463200	2465200	995 optimet Stratos 1.6.2		Eller SH400 udstyret							.9925
P	ræventiv saltni	ing			7101072.02		motekstra pomps							
		Vøjtemperatur	Fugtsalt	Sugnait	Fugtesh	Combi	Combi	Combi	Çombi	Combi	Combi	Cambi	Combi	Saltlage
Doseringsvalg	Vajtilstand	°C				Forsalt - saitiage	Fugnait + sattlage	Fugtaait + saltlage	Fugtsait + saitiage	rgaines + rearran?	Fogstaft + seitfage	Fugesalt + writinge	Fogstait + soltlage	
			g/m2	g/m2	g/m2	g/m2 × mi/m2	g/m2 × mi/m2	अूर्ग्याः ३ + कार्य्यमा 2	g/m2+mt/m2	g/m2+m8/m2	g/m2 +m/m2	g/m2+mt/m2	g/m2 × m8/m2	m\$/m2
	Rim (tør, let fugtige eller fugtige veje)	over 3	7,5	10	7	*3+10	3+11	*3+11	*3+11	*3+11	3+11	*3+11	3+11	20
2	Rim (tør, let fugtige eller fugtige veje)	under 3	10	12,5	10	3+16	5+13	4+15	4+15	4+15	4+15	4+15	4+15	30
	Frysende våde veje	over 3	12,5	15	12	5+15	7,5+13	7+15	7+15	7+15	7+15	7+15	7+15	30
	Frysende våde veje	under 3	15	17,5	15	7,5+15	10+13	15 **(Fugtsalt)	10+13	10+13	10+13	10+13	10+13	40
5	Sne og isslag	Alle	20	25	20	10+20	17,5+10	20 **(Fugtsalt)	16+10	16+10	16+10	16+10	16+10	
Under snefal	d													
befugtning	snefald	Alle	5	5	7	5	5	5	5	5	5	5	5	
Saltning ved	allerede indtrå	dt glathed		_										
7	ls / fastkørt sne	Alle	20	25	20	10+20	17,5+10	20 **(Fugtsalt)	16+10	16+10	16+10	16+10	16+10	

Doseringsinstruks

Vejdirektorate

TRAFFIC IMPACT ON THE ICE MELTING

