

The study on winter road maintenance by applying predicted friction index "GRIP Analysis"

- Takayuki KOJIMA
- Nippon Expressway Research Institute Company Limited
- Acting Division Chief
- t.kojima.ad@ri-nexco.co.jp

Koichi ABE Director, Tohoku Regional Head Office East Nippon Expressway Company Limited

Tetsuo ARUGA Assistant Group Leader Weathernews Inc.

0. CONTENT

- 1. Introduction
- 2. Snow and Ice Management
- 3. Determining the state of Expressway Surface
- 4. Verification of GRIP ANALYSYS
- 5. Advanced Winter Road Management
- 6. Conclusion

1. INTRODUCTION

1. Location ; lies between latitude 30°N and latitude 45°N.

1. INTRODUCTION

4 . Service length (in snow cold region) ; 3,700km

5 . Daily vehicle users ; 5 mil. Vehicles

2. SNOW AND ICE MANAGEMENT

Collection of Weather information
Weather Forecast

- •Weather observation equipment
- •Weather Forecast

Patrol

Snow and Ice Control

- Judgment of operation start
- Dissemination of traffic guidance
- Judgment of traffic control

Snow and Ice Control Operation

Weather Information Dissemination

Collection of current weather information and road surface condition

2. SNOW AND ICE MANAGEMENT

Expressway administrator

• Judgment by experience varies greatly depending on the staff involved.

But therefore, there is no quantitative index for whether the operations are too early or too late.

• Spreading anti-icing in order to maintain the best possible road surface has a tendency to increase the amount of rock salt used.

• Since it is unclear whether the operation is enough, snow-removal is repeated as much as possible so that the state of a road surface may be kept as safe as possible.

• Even if the conditions on a road get worse (except for the case of freezing), many cases are difficult for expressway administrator to make a judgment to Road closed.

Forecast flow chart "GRIP Analysis"

Road components change model

Proprietary innovations in this flow chart:

- The weather, a road surface conditions, and GRIP Analysis are integrated.
- Snow management operations are reflected.
- Observational data is reflected in real time.
- Supposition reflection of traffic conditions.
- It corresponds to changes and prediction of the weather situations.
- Not a point but a line performs analysis and prediction, aimed at supporting operations.
- Supposition of real time usage.
- Supposition of evaluation and feedback of road surface management level and operations results in real time usage.

Observation
 by Remote Road Surface State Sensor

• Observation

by Remote Road Surface State Sensor Installed to a Vehicle

Analysis
 Condition change Model

CONDITION	GRIP
dry	0.8~1.0
wet	0.6~0.8
snow	0.1~0.8
slushy	0.4~0.8
ice	0.0~0.2

Comparison of GRIP Analysis and Observation GRIP

%Data comparison SANJO

GRIP Analysis and Observation GRIP are correlated.

Relationship between traffic accidents and road condition (Calculated value of the GRIP Analysis)

Safe condition Accident Map GRIP Analysis (0.6 \sim)

Negative condition Accident Map GRIP Analysis $(0.2 \sim 0.4)$

Traffic accidents is relevance to the road condition.

Survey of GRIP and Average vehicle speed

Average vehicle speed, observd GRIP (daytime)

Average vehicle speed, observd GRIP (night)

The GRIP and average vehicle speeds would not be proportional.

Distribution of Average vehicle speeds and GRIP

Average vehicle speed, volume of vehicle (GRIP 0.7-0.8)

Average vehicle speed, volume of vehicle (GRIP 0.4-0.7)

Average vehicle speed, volume of vehicle (GRIP 0.2-0.4)

The relationship of the GRIP and average vehicle speeds needs to be examined in more detail.

Correlation with the road surface condition

- Skid resistance
- □Traffic accidents
- □Average vehicle speeds
- □ Appearance time of snow and ice surface

LEVEL of SERVICE

Consensus building !

(users) (traffic administrator) (expressway administrator)

It is planning creating the road surface management index from correlation with the number of traffic accidents, a driving speed, the number of traffic stop time, and sliding friction.

Expressway administrator manages the snow/ice removal operation in order to keep a level of "Desirable road condition".

Evaluate in

The time from a snowfall start to snow/ice removal operation start The appearance ratio of an deteriorated road surface The time from the end of snowfall to road service condition recovery

6. CONCLUSION

Quantifies "Desirable road condition" and "Hazardous road condition"

There are possibilities for evaluating the cost-benefits of snow/ice countermeasure operations.

Thank you!

XIV CONGRÉS INTERNACIONAL DE VIABILITAT INVERNAL Andorra, 4-7 de febrer 2014