

A Study on Use of Quantitative Indicator to Support the Improvement of Winter Road Management

• Speaker: Roberto TOKUNAGA

- Senior Researcher
- C.E.R.I. for cold Region, P.W.R.I., Japan
- roberto-1097ga@ceri.go.jp

Co-authors: M. KIRIISHI, A. FUJIMOTO, N. TAKAHASHI, T. ISHIDA, K. INOUE and H. HARA

Outlines

- Introduction
- Review
 - Winter Road Management Criteria
 - Methods for Measuring Friction
- Comparative Study of Friction Testers
- Using Friction Data
 - Decision Making
 - Performance Evaluation
- Summary and Future Prospects

Introduction raffic Jam caused by Narrow Roadway Low Temperature & Heavy Snowfall Extremely Slippery Roadway Snow Pile & Narrow Walkway

Introduction

- To ensure efficient and effective road surface management as part of winter road service in snowy cold regions, decisions should be made on the basis of easy and accurate understanding of surface conditions
- In order to contribute for more efficient winter road service in view of the recent financial constrains in Japan, CERI conducted a research on...
 - criteria for winter road surface management in the world
 - methods for quantitative evaluation of road surface
 - comparison study of friction measurement devices
 - utilization of friction data

Winter Road Management Criteria

Japan

Road classification

Roadside Environment Daily Traffic Volume	Urban	Suburban or Rural (flat-land)	Mountainous
20,000 ~	А	В	В
10,000 ~ 20,000	В	С	В
4,000 ~ 10,000	С	D	С
1,000 ~ 4,000	D	D	D
~1,000	E	E	E

Road surface conditions

Road su	ad surface conditions Road surface maintenance goals		oad surface maintenance goals	
LOS	Classification		Maintenance Goals	
	Black Ice (thin ice)	ŀ	Road surface LOS 4 to be ensured 24 hours a day	
Very slippery Thick Ice Very Slippery Compacted Snow		E	• Road surface LOS 4 to be ensured between 6AM and 10PM	
• Thick Ice • Powder Snow over Thick Ice	C	 • Road surface LOS 3 to be ensured 24 hours a day 		
3	• Thin ice • Granular Snow over Thick Ice	C	 Road surface LOS 3 to be ensured between 6AM and 10PM At other hours, road surface LOS 2 to be ensured 	
	Compacted Snow		• In principal, road surface LOS 2 to be ensured 24 hours a day	
4 • Powder / Granular Snow • Slushy		E	• Appropriate maintenance operations shall be done based on the snow removal operations done and the traffic conditions	
5	• Wet / Dry (Free of snow & ice)		along the route	

Winter Road Management Criteria

Europe

 Northern European countries have already introduced friction values as an (F index in winter road management and set standards in line with local meteorological conditions, time of day, road classifications and traffic volume

North America

 Although some regions of North America also take friction measurements, such work are basically related to the management of "bare pavement (free of snow & ice)", no detailed threshold values are set

Quality standards of anti-icing

INIAMO maintenance class	ls	I	lb
Normal	0.30	0.28	0.25
Friction requirement	road surface below -6 °C 0.25	road surface below -4 °C 0.25	spot sanding 0.25 line treatment 0.22
Cycle time	2 h	2 h	salt 3 h sand 4 h

Source: Snow and Ice Databook 2010

Typical Canadian Level of Service Goals

	Expressways	Arterial Highways	Connector Roads	Local Roads					
Maintenance Standard									
Surface Condition	Bare Pavement	Bare Pavement Bare Centre Line		Snow packed with abrasive					
Maximum Time to Level of Service	Within 4-12 hours after end of storm	Within 12 hours after end of storm	hin 12 hours after end of storm end of storm						
Snow Accumulation Trigger for Plowing	≥ 2 cm	≥ 2 cm	≥5 cm	≥8 cm					
Material									
Salt	As Required	As Required	As Required	N/A					
Sand	Surface Temperature ≤-10 °C	Surface Temperature ≤ -10 °C	Surface Temperature ≤-10 ° C	As Required					
Source: Snow and Ice Databook 2010									

Methods of Friction Measurement

Locked Wheel

Slip Ratio

Side force

Tire Vibration

Non-contact sensor

Comparison Tests (Outlines)

- In order to understand basic characteristics of friction measurement devices comparison tests are conducted on CERI's Cold Region Test-track since 2007
- Friction devices used in the comparison test of 2013:
 - (A) Locked Wheel Friction Tester (LWFT Full Brake)
 - (B) Continuous Friction Tester (CFT Side Force)
 - (C) Non-contact sensor (IR Infrared)

CERI's Test Track (Tomakomai)

Bus Type LWFT

Vehicle Equipped with CFT and IR

Comparison Tests (Outlines Cont.)

Road Surfaces Made on CERI's Test Track (Tomakomai City)

- Testing speed
 - Test runs were performed at 20, 40, 60 and 80 km/h on each surface

- Road Surface Types
 - Dry: fine-graded gap asphalt concrete pavement (clear)
 - Wet: 0.5 ~ 1.0 mm thick of water on the pavement
 - Compacted Snow: approx. 15 cm thick of compacted snow on the pavement
 - Thin-Ice: 0.5 ~ 1.0 mm thick of ice film on the pavement

Comparison Tests (Results)

Box plot of friction values according to surface conditions (Jan 22nd & 28th 2013)

IR's time lags in the friction value changes in comparison with CFT (Jan 22nd 2013)

Using Friction Values (Decision Support Sys.)

Real time friction values can be used to check road surface condition during patrol

Road weather information and road surface condition information can be checked at the office

Friction data provided to operators on the spreader truck

Summary & Future Prospects

- In order to propose efficient winter road service in view of the recent financial constraints in Japan and characteristics of snowy cold regions, the authors in this study conducted research on reports from various countries regarding the criteria for winter road surface management, methods for quantitative assessment of winter road surface, and utilization of friction values for supporting decision-making and feedback
- The authors will keep working on the improvement of technologies for forecasting road surface and weather conditions as well as for providing friction monitoring data to the managers and operators
- Also, a feedback tool will be developed to support performance evaluation of winter road service and decision-making on long-term road management to be used not only for identifying road sections that need special attention but also for feeding back information regarding usability of road surface management criteria in other road sections

1097ga@ceri.go.jp)

