



# USO DE ADITIVOS ORGANICOS PARA INCREMENTAR LA DURACIÓN DE LOS FUNDENTES SALINOS SOBRE CALZADAS PAVIMENTADAS

- Autor Jorge Maturano
- Coord. Centro Universitario de Vialidad Invernal, DNV-EICAM
- <u>jmatur@eicam.unsj.edu.ar</u>
- Grupo de Trabajo
- Carolina Aguilera DNV, San Juan
- Walter Omar Pérez DNV, Mendoza
- Marcelo Franciosi DNV, Mendoza







#### **CONTENIDO**

- 1. Introducción
- 2. Acuerdo DNV-EICAM
- 3. Antecedentes
- 4. Planteo de la Investigación
- 5. Proyecto de Investigación 2012 2013
- 6. Resultados Conclusiones
- 7. Pautas a Seguir





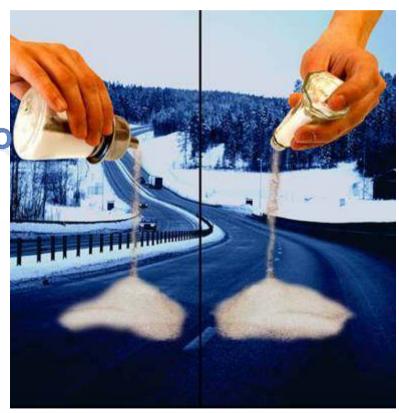


#### 1.- INTRODUCCION

Todos queremos ese líquido o sal mágica que quite o prevenga el hielo pero que no tenga ninguna consecuencia sobre el medio ambiente.












#### **MEZCLAS EN DESARROLLO**

### **DERIVADO ORGANICO**



### **FUNDENTE QUÍMICO**







#### 2.- ACUERDO DNV- EICAM

- Jornadas de vialidad invernal
- Página Web <u>www.cuvi.org.ar</u> (cinvernal@eicam.unsj.edu.ar)
- Desarrollo de Cursos de Capacitación
- Investigación de mezclas anti-hielo







### 3.- ANTECEDENTES

Trabajo en la práctica en Distritos de Mendoza, Santa Cruz y Neuquén con nuevas mezclas

SALMUERA + FUNDENTES AGRÍCOLAS

**DISTINTAS CONCENTRACIONES** 

| CINa 23,3% | Fundente<br>Agrícola |
|------------|----------------------|
| %          | %                    |
| 95         | 5                    |
| 90         | 10                   |
| 85         | 15                   |
| 80         | 20                   |













### 3.- ANTECEDENTES

### Trabajos, determinaciones en Ruta 7, Mendoza











### RESULTADOS, Trabajos de Mendoza



- Determinación de Punto de Congelamiento de distintas soluciones
- Implementación de metodología de campo para obtención de muestras y medición de residuo













### 4.- PLANTEO DE LA INVESTIGACIÓN de la DNV

### Acuerdo EICAM-IBT

- IBT Instituto de Biotecnología Fac. de Ing. Química de la UNSJ
- A) Caracterización FISICO QUIMICA de los distintos subproductos orgánicos, comerciales y residuos
- B) Prueba de distintas soluciones fundentes
- C) Desarrollo de Metodología Expeditiva que facilite la medición de residuo salino en el camino







### A.- Caracterización FÍSICO-QUÍMICO

### Vinazas ensayadas:

Caña de azúcar:

- Residuo
- Concentrada comercial

Vino

Pulpa de manzana

Pulpa de pera

Remolacha azucarera









#### **ENSAYOS FÍSICOS - RESULTADOS**

| Mastra | Contenido                                  | Densidad<br>a 20 °C, | рН             | Conductivida<br>d | Viscosidad,<br>cp |         |
|--------|--------------------------------------------|----------------------|----------------|-------------------|-------------------|---------|
| 2      |                                            | g/I                  |                | mS/cm             | A 5°C             | A 20 °C |
| 1      | Vinaza de<br>caña de                       | 1.0326               | 326 5.94 22.70 |                   | 2.37              | 1.65    |
| 2      | Vinaza<br>concentrada                      | 1.2215               | 7.07           | 41.50             | 318.75            | 220.47  |
| 3      | Extracto de pulpa de manzana               | 0,9982               | 5.00           | 1.11              | 9.19              | 7.34    |
| 4      | Vinaza de<br>pera<br>Neuquén               | 1.0450               | 4.95           | 12.02             | 3.11              | 2.15    |
| 5      | Vinaza de<br>pulpa<br>manzana<br>Río Negro | 1.0560               | 3.60           | 2.97              | 22.74             | 15.09   |
| 6      | Vinaza de<br>remolacha                     | 1.0309               | 3.57           | 6.63              | 2.09              | 1.66    |
| 7      | Vinaza de<br>vino                          | 1.0230               | 3.34           | 7.87              | 2.28              | 1.90    |
| 8      | Cloruro de<br>sodio 233<br>a/l             | 1.1449               |                |                   | 2.2759            | 1.9023  |







#### **ENSAYOS QUÍMICOS - RESULTADOS**

| 2012 | Azucares ( g                       |        | es ( g/I) | Pectina | Fe     | Cu   | Zn    | Na      | к        |
|------|------------------------------------|--------|-----------|---------|--------|------|-------|---------|----------|
|      | Contenido Reductores Totales       | g/l    | mg/l      | mg/l    | mg/l   | mg/l | mg/l  |         |          |
| 1    | Vinaza de<br>caña de<br>azúcar     | 9.21   | 32.059    | 3,82    | 8.63   | 0.30 | 1.92  | 554.75  | 7355.25  |
| 2    | Vinaza<br>concentrada *            | 242.05 | 270.588   | 68,84   | 187.22 | 1.36 | 24.07 | 9222.50 | 43452.50 |
| 3    | Extracto de<br>pulpa de<br>manzana | 0.885  | 14.471    | 0,08    | ,-     |      | -     | -       | -        |
| 4    | Vinaza<br>Neuquén                  | 23.7   | 97.56     | 1.05    | 0.64   | 0.18 | 3.53  | 538.13  | 3493.13  |
| 5    | Vinaza Río<br>Negro                | 28.1   | 148.000   | 3,48    | 1.47   | 0.86 | 0.46  | 406.25  | 1917.50  |
| 6    | Vinaza de<br>remolacha             | 56.725 | 74.118    | 0,02    | ND     | ND   | ND    | 980.09  | 1890.76  |
| 7    | Vinaza de                          | 3.035  | 6.706     | 0,04    | -      | -    | -     | -       | -        |







### A.- Caracterización FÍSICO-QUÍMICO

#### **CONCLUSIÓN**

VINAZA CONCENTRADA de CAÑA DE AZUCAR, Comercial, es la que nos da mejores resultados en la práctica

- •VISCOSIDAD, mayor contenido de azucares y % de pectina, propiedades adherentes.
- •ALTA CONDUCTIVIDAD, relacionada con el contenido de iones.
- •PH NEUTRO, lo cual evitaría fenómenos de tipo corrosivo en las superficies donde se aplica.







#### **B.- Pruebas soluciones fundentes**

En laboratorio se prepararon las siguientes soluciones:

- De Cloruro de sodio, composición eutéctica: NaCl 23.3 % (p/p). Sal que utiliza el 4ºDistrito, Mendoza.
- De Cloruro de Magnesio, composición eutéctica: MgCl2 22 % (p/p). provista por la EICAM.
- De Cloruro de Calcio, composición eutéctica: CaCl 29.87 % (p/p). Sal que utiliza el 4ºDistrito Mendoza.

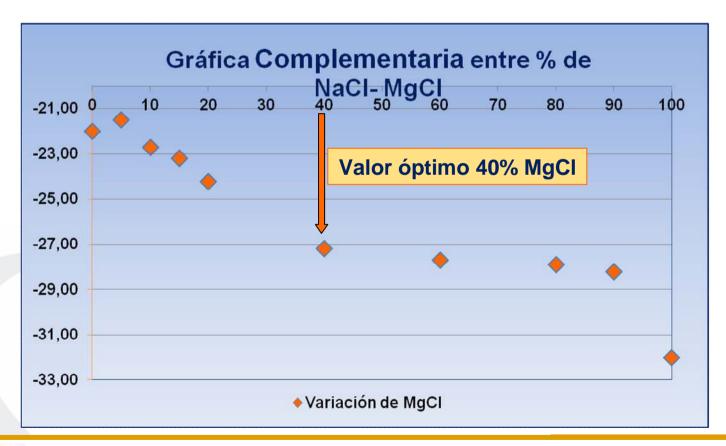






#### **B.- Pruebas soluciones fundentes**

#### Punto Congelamiento para mezcla CINa-CIMg


| Composid   | Temperatura<br>de                     |                      |  |
|------------|---------------------------------------|----------------------|--|
| NaCI-H₂O * | MgCl <sub>2</sub> -H <sub>2</sub> O * | congelamiento,<br>°C |  |
| 0          | 100                                   | -32                  |  |
| 100        | 0                                     | -22                  |  |
| 95         | 5                                     | -21.5                |  |
| 90         | 10                                    | -22.7                |  |
| 85         | 15                                    | -23.2                |  |
| 80         | 20                                    | -24.2                |  |
| 60         | 40                                    | -27.2                |  |
| 40         | 60                                    | -27.7                |  |
| 20         | 80                                    | -27.9                |  |
| 10         | 90                                    | -28.2                |  |







#### **B.- Pruebas soluciones fundentes**



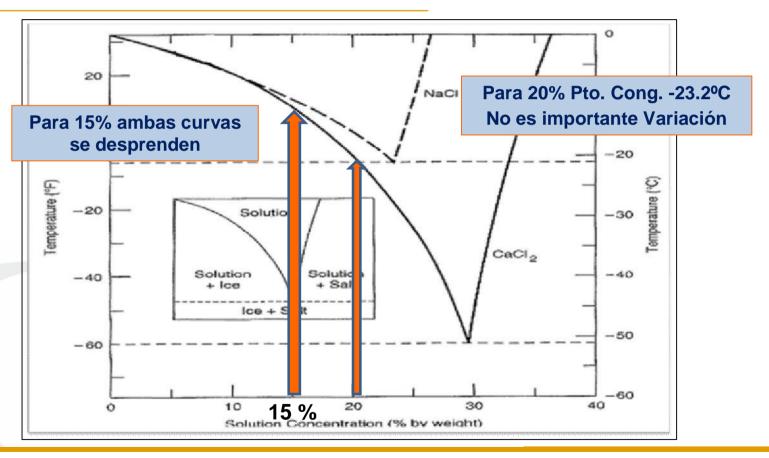






#### **B.- Pruebas soluciones fundentes**

#### Punto Congelamiento para mezcla NaCl-CaCl


| Composición, % p/p |             | Temperatura de congelamiento |  |
|--------------------|-------------|------------------------------|--|
| NaCI-H2O *         | CaCl2-H2O * | _                            |  |
| О                  | 100         | -38.2                        |  |
| 100                | О           | -22                          |  |
| 95                 | 5           | -22.2                        |  |
| 90                 | 10          | -23.2                        |  |
| 85                 | 15          | -23.2                        |  |
| 80                 | 20          | -23.2                        |  |







#### **B.- Pruebas soluciones fundentes**









Se observa q variando el % de vinaza no hay mejoras

sustanciales respecto del

### 5.- PROYECTO INVESTIGACIÓN 2012 - 2013

#### **B.- Pruebas soluciones fundentes**

Punto Congelamiento para mezcla NaCl- Vinaza





|      | 0                    |            | Punto de con                  | gelamiento. |
|------|----------------------|------------|-------------------------------|-------------|
|      | Composic             | ión, % p/p | Temperatura de congelamiento, |             |
|      | NaCl-H2O * Vinaza ** |            | ℃                             |             |
|      | 0                    | 100        | -20.5                         |             |
|      | 100                  | 0          | -22                           |             |
|      | 95                   | 5          | -22.2                         |             |
|      | 90                   | 10         | -22.2                         |             |
|      | 85                   | 15         | -20.9                         |             |
|      | 80                   | 20         | -20.7                         |             |
|      | 70                   | 30         | -20.5                         |             |
| - 13 |                      |            | -                             | 1           |







#### **B.- CONCLUSIONES**

#### Hemos corroborado que:

- Hay poca variación del punto de congelamiento con el uso de productos orgánicos en soluciones salinas.
- La conveniencia de uso de otras sales en la mezcla, a partir de temperaturas inferiores a -22 °C.







### C.- Desarrollo de metodología

#### **Instrumento MRS**

- Conductivímetro
- Económico
- Fácil uso











### C.- Desarrollo de metodología





#### PAÑO Nº 1 Ancho de calzada: 7.30m HORARIO 3 i HORARIO 3 HORARIO 2 HORARIO 1 HORARIO 1 HORARIO 2 Mediciones Día 7 $0.75 \, \mathrm{m}$ $1.00\,\mathrm{m}$ Mediciones Día 4 $4.50 \, m$ $1.00\,\mathrm{m}$ Mediciones Día 2 $1.00\,\mathrm{m}$ Mediciones Día 1 $0.75 \, \mathrm{m}$ Long. Separación: 150 m

Gráfico Nº1 - Plantilla de mediciones







### C.- Desarrollo de metodología

#### APLICACIÓN SOBRE CALZADA, 6 franjas de 4.50 x 7.30 m.

Las soluciones regadas fueron:

- 1) 100% Salmuera de CINa
- 2) 90% Salm. + 10% Vinaza concentrada
- 3) 90% Salm. + 10% Vinaza de vino
- 4) 60% Salm. + 40% Bischofita
- 5) 50% Salm. + 40% Bischofita + 10% Vinaza concentrada
- 6) 50 Salm. + 40% Bischofita + 10% Vinaza de vino









### C.- Desarrollo de metodología - Campañas

















### C.- Desarrollo de metodología - Campañas

Rnac. Nº 7 - Pta de Vacas, Mendoza







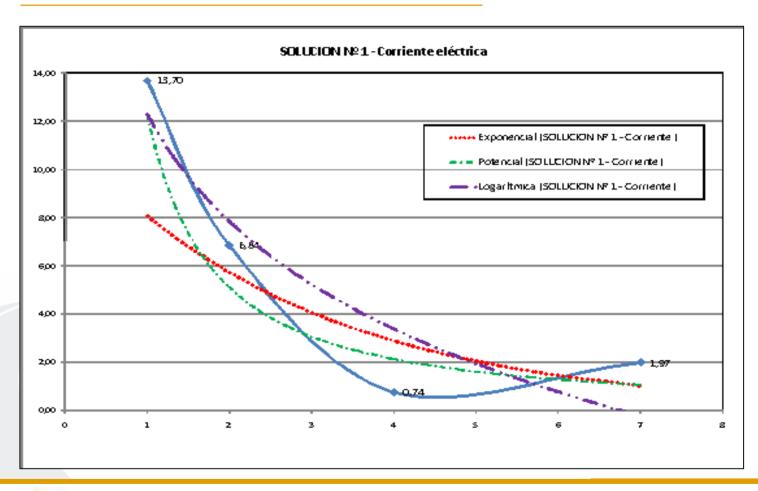




### C.- Desarrollo de metodología

| SOLUCION<br>SALINA Nº 2 | SALMUERA + Vinaza concentrada 10 % |
|-------------------------|------------------------------------|
|                         |                                    |

|                      | Medición OBtenida<br>sobre la Sciución(mA) |       | Corriente medida<br>sobre el<br>pavimento (mA) | Mediolón<br>Promedio (mA) | Corriente<br>Promedio (mA) |
|----------------------|--------------------------------------------|-------|------------------------------------------------|---------------------------|----------------------------|
|                      | 26,90                                      | 30,80 | 12,38                                          | 28,85                     | 17,3                       |
| Dia 0 – MArtes       | 39,20                                      | 33,30 |                                                | 36,25                     |                            |
|                      | 22,60                                      | 25,30 |                                                | 23,95                     |                            |
| Dia 1 –<br>Mièrcoles | 23,20                                      | 16,70 |                                                | 19,95                     |                            |
|                      | 17,40                                      | 19,40 | 12,38                                          | 18,40                     | 8,85                       |
|                      | 22,80                                      | 27,90 |                                                | 25,35                     |                            |
|                      | 20,10                                      | 23,40 |                                                | 21,75                     |                            |
| Dia 3 – Viernes      | 15,90                                      | 18,70 | 12,38                                          | 17,30                     | 4,67                       |
|                      | 12,50                                      | 11,70 |                                                | 12,10                     |                            |
|                      |                                            |       |                                                |                           |                            |
|                      | 15,10                                      | 15,70 |                                                | 15,40                     |                            |
| Dia 7 – Lunes        | 17,20                                      | 15,00 | 12,38                                          | 16,10                     | 4,2                        |
|                      | 16,90                                      | 19,60 |                                                | 18,25                     |                            |

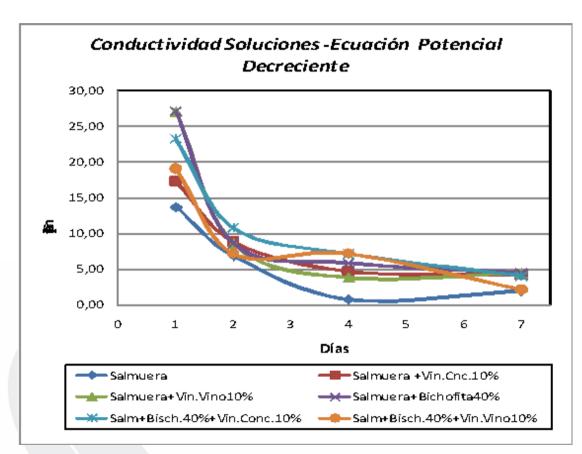









### C.- Desarrollo de metodología










#### C.- Desarrollo de metodología



#### **CONCLUSIONES**

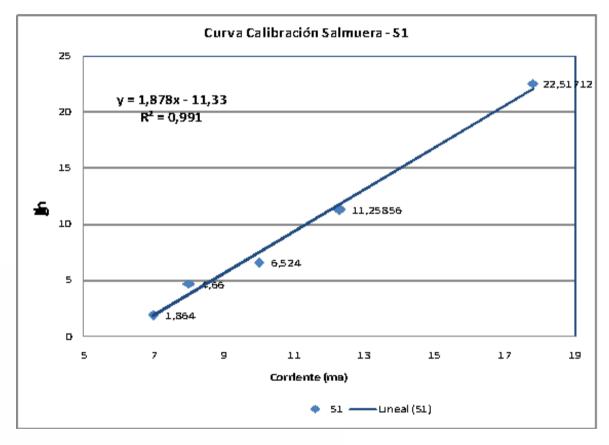
#### Solución 2:

90 % de salmuera + 10 % Vinaza comercial (caña de azúcar)

**Solución 5:** 50 % de salmuera + Bischofita 40% + 10 % Vinaza comercial (caña de azúcar)

**Solución 3:** 90 % de salmuera + 10 % Vinaza de vino procedente de Neuquén (gratuita).





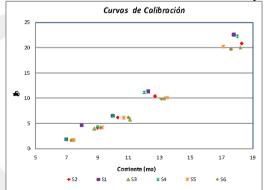


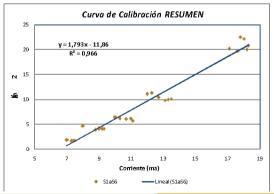

### C.- Desarrollo de metodología - LABORATORIO












#### C.- Desarrollo de metodología - LABORATORIO

- Calibración NaCl + H2O destilada Concentración eutéctica
  - Aplicación sobre superficie específica
- Calibración NaCl + H2O de red Concentración eutéctica
  - Aplicación sobre superficie específica Igual procedimiento
- Verificación de relaciones entre laboratorio y campo
  - Registro con instrumental de igual relación
- Procedimiento reiterativo para demás soluciones





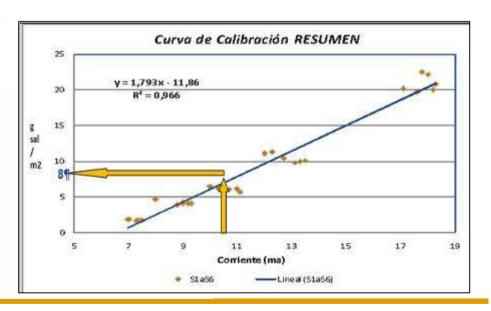




#### 6.- RESULTADOS - CONCLUSIONES



- Definición de % óptimos de productos regionales para mezclas de soluciones con diferentes sales.
- Definición de una Única Curva de calibración general sobre las soluciones ensayadas.
- Metodología empleada, modelo de comportamiento y uso de Instrumento MRS convalidan los datos obtenidos en laboratorio por el 4°Distrito Mendoza, en cuanto a correlación Conductividad vs Residuo salino.






#### 7.- PAUTAS A SEGUIR



- Repetir Caracterización físico química de vinazas
- Verificar y\o Ratificar la Curva de calibración general
  - Trabajos en campo
- Aplicación y uso del instrumento MRS
  - Condiciones reales alta montaña
- Evaluación ambiental
- Optimizar operaciones de campo







### 7.- PAUTAS A SEGUIR



- Optimizar operaciones de campo
  - Avances 2009 2013 Mendoza







# ASSOCIATION MONDIALE DE LA ROUTE AIRCR PRINC AIRCR PRI



- Optimizar operaciones de campo
  - Avances 2009 2013 Mendoza









#### **AGRADECIMIENTOS**

- A LOS DISTRITOS QUE NOS PROPORCIONARON LOS ELEMENTOS PARA EL ESTUDIO.
- AL 4º DISTRITO MENDOZA POR APOYAR, PARTICIPAR Y COLABORAR EN LA INVESTIGACION.
- AL 9º DISTRITO SAN JUAN POR DISPONER DE SU PERSONAL, INSTALACIONES Y EQUIPOS PARA LLEVAR A CABO LAS TAREAS DE CAMPO.
- AL IBT POR DISPONER DE SU LABORATORIO PARA LA INVESTIGACION.
- A LA ASOCIACIÓN ARGENTINA DE CARRETERAS POR LA GESTIÓN









